

A Collaborative Approach for Algorithm Operationalization

Alexander Werbos, L.E. Dafoe, S. Marley, T.S. Zaccheo

- The Problem: Getting Novel, Robust Science Into Operations
- Tightening the O2R2O Loop
 - Eliminating Rewriting
 - Reducing Manual Configuration
 - Providing a Unified Testing Framework
- Building an Open Standard
 - Multi-Mission Enterprise Algorithm Model
- Implementing Advanced O2R2O Principles
 - Algorithm WorkBench Component Model
 - Applicability to JPSS Modeling

- The Problem: Getting Novel, Robust Science Into Operations
- Tightening the O2R2O Loop
 - Eliminating Rewriting
 - Reducing Manual Configuration
 - Providing a Unified Testing Framework
- Building an Open Standard
 - Multi-Mission Enterprise Algorithm Model
- Implementing Advanced O2R2O Principles
 - Algorithm WorkBench Component Model
 - Applicability to JPSS Modeling

The Problem: Getting Novel, Robust Science Into Operations

- Desire is for cutting-edge data products built from the newest data streams
- Existing process is effective, but requires a long timeline between science and operations
- Strive for a more efficient process that moves algorithm developers closer to operational systems

- The Problem: Getting Novel, Robust Science Into Operations
- Tightening the O2R2O Loop
 - Eliminating Rewriting
 - Reducing Manual Configuration
 - Providing a Unified Testing Framework
- Building an Open Standard
 - Multi-Mission Enterprise Algorithm Model
- Implementing Advanced O2R2O Principles
 - Algorithm WorkBench Component Model
 - Applicability to JPSS Modeling

Tightening the O2R2O Loop

Eliminating Rewriting

- Strive for a single codebase that is shared between science and operational environments
- Algorithms must use common data interfaces
 - Allow data to be retrieved in different ways in test vs. operations
- Algorithms must be independent of block size and parallelization
 - Different operational systems will invoke algorithms on data with different coverage and resolution

7

Reducing Manual Configuration

- Develop a system-independent way to express algorithm configuration
 - Represent data flows between algorithms
 - Allow different system configurations to substitute data from different sources
 - Flexible model that can be read and modified by a variety of tools
- System Configurations must be editable by algorithm developers
 - Test subsets of operational systems for small-scale integrations

Providing a Unified Testing Framework

- Scientific and Operational configurations must be testable on the same data
 - Test infrastructure must use same data interfaces as algorithms, to ensure portability
- Testing mechanisms must use algorithm configuration model
 - Facilitate automated tracking of data as system is tested
 - Verify complete system coverage

- The Problem: Getting Novel, Robust Science Into Operations
- Tightening the O2R2O Loop
 - Eliminating Rewriting
 - Reducing Manual Configuration
 - Providing a Unified Testing Framework
- Building an Open Standard
 - Multi-Mission Enterprise Algorithm Model
- Implementing Advanced O2R2O Principles
 - Algorithm WorkBench Component Model
 - Applicability to JPSS Modeling

Building an Open Standard

- Genuine Multi-Mission sharing of algorithms and data requires collaboration
 - Democratization of developing systems and algorithms that can run within them
- No single organization should serve as authority
 - Must enable distributed management of algorithms
 - Algorithms must be encapsulated as components
- Standards must address the needs of diverse missions and systems
 - Facilitate smooth data flow between weather models, LEO, and GEO observing platforms
 - Allow new and upgraded data streams to be migrated to existing algorithms

Multi-Mission Enterprise Algorithm Model

- Describe algorithm inputs and outputs in abstract terms
 - Allow algorithms to be run at different grid resolutions
 - Automated systems to track algorithm interdependencies
 - Generate processing trees algorithmically
- Represent outputs in semantically-useful form
 - Users can apply reusable tools to export data in a variety of formats
- Allow user-driven modification of metadata
 - Users can experiment with configuration changes and visualize their results on the entire processing chain

- The Problem: Getting Novel, Robust Science Into Operations
- Tightening the O2R2O Loop
 - Eliminating Rewriting
 - Reducing Manual Configuration
 - Providing a Unified Testing Framework
- Building an Open Standard
 - Multi-Mission Enterprise Algorithm Model
- Implementing Advanced O2R2O Principles
 - Algorithm WorkBench Component Model
 - Applicability to JPSS Modeling

Algorithm Workbench Component Model

- AER Algorithm WorkBench is a complete ground processing system, evolved from the GOES-R testing infrastructure
 - Runs multiple algorithm blocks in parallel
 - Allows users to automatically generate execution trees
 - Can be run on user workstations, servers, or cloud systems
- Initial Effort Implements Open-Standard principles
 - Algorithm data are stored as freely-editable XML files
 - Fragment-based storage architecture is designed to be extended by multiple users
 - Shared algorithm data model can be implemented in different environments

Applicability to JPSS Modeling

- Prototype effort using MagicDraw and the AER Algorithm WorkBench to work with JPSS algorithm model
 - Users can model algorithm components in MagicDraw
 - Allows desktop visualization and editing of system design
 - Algorithm WorkBench imports XML model and can immediately use algorithms in its generated trees

Summary

- Current Research to Operations loop is effective but high-overhead
- Using abstract design principles, algorithms can standardize on a single code base shared between research and operations
- Algorithm component metadata can allow system engineering models to directly control algorithm execution
- Prototype effort using MagicDraw and AER Algorithm WorkBench has demonstrated these principles

