Open R2O Architecture
Reducing the Cost of Entry for Science Applications

Dr. Stephen Marley, Patrick Barnes

Imperative for Change

- **Constraints**
 - Limited budget for the sustainment of older operational satellite science algorithms

- **Opportunities**
 - OSPO is looking to retire products and product systems as new products become operational
 - OSGS is moving towards an Integrated Ground Enterprise where the algorithms become services

- **Goal**
 - Provide continuity of NOAA products between current and future NOAA operational satellites

Social Networking Impact

As the relative cost of IT Infrastructure continues to decrease, the role of the provider as the "sole source" of value will diminish → the End-Users will be empowered

Algorithm R2O

Enterprise Product Lifecycle
- Formal process for product algorithm development and operational integration
- Focus is on a repeatable mature approach that ensures high-quality operational algorithms

Cons

- Slow to Respond to Change
- Mission Dependent Integration
- Divergent Implementation

Challenge

- How to maintain rigor of the Enterprise Product Lifecycle
- Take advantage of cloud tech
- Engage broader scientific research community
- Provide agility / responsiveness to integrate improved science

Next Steps

Establish a Consortium (Industry/Government/Academia)
- Develop Execution Control Patterns
- Domain Specific Working Groups
- Establish Open R2O Architecture Compliance Framework

Establish Cloud based test environment
- Access to near-Real-Time Satellite Data
- Prototype the re-engineering of subset of algorithms to Open R2O Architecture

Deployment Flexibility

- Formally process for product algorithm development and operational integration
- Focus is on a repeatable mature approach that ensures high-quality operational algorithms

Cons

- Slow to Respond to Change
- Mission Dependent Integration
- Divergent Implementation

Challenge

- How to maintain rigor of the Enterprise Product Lifecycle
- Take advantage of cloud tech
- Engage broader scientific research community
- Provide agility / responsiveness to integrate improved science

As-Is” R2O Process

- Architect for Modularity
 - Deployable, manageable, reusable, composable, stateless, providing concise interfaces
 - The Algorithm Model is Owned and Governed by an established Authority (e.g. NOAA)
 - The Authority manages the Compliance Program for approving implementations of Algorithm Modules for operational use
 - The Adoption of Standards
 - Coding Standards
 - Common Execution Control Design Pattern
 - Interface Standards
 - Data & Metadata Standards

To-Be” R2O Process

- Guardian for Modularity
 - Easy to deploy, manageable, reusable, composable, stateless, providing concise interfaces
 - The Algorithm Model is Owned and Governed by an established Authority (e.g. NOAA)
 - The Authority manages the Compliance Program for approving implementations of Algorithm Modules for operational use
 - The Adoption of Standards
 - Coding Standards
 - Common Execution Control Design Pattern
 - Interface Standards
 - Data & Metadata Standards

Governance is Key

- Architect for Modularity
 - Deployable, manageable, reusable, composable, stateless, providing concise interfaces
 - The Algorithm Model is Owned and Governed by an established Authority (e.g. NOAA)
 - The Authority manages the Compliance Program for approving implementations of Algorithm Modules for operational use
 - The Adoption of Standards
 - Coding Standards
 - Common Execution Control Design Pattern
 - Interface Standards
 - Data & Metadata Standards

Responsive – Resourceful – Reliable

https://www.JeTSI.com
Telephone: (703) 471 - 7588

Dr. Stephen Marley, Patrick Barnes

JeTSI

Built around rigorous algorithm architecture models, an open algorithm development API and a scalable algorithm execution architecture, the "Open R2O Architecture" significantly reduces the cost of entry to perform basic research, provide high-throughput product generation services, or provide value-added end-user services.

The advent of ubiquitous commodity computing services affords us the opportunity to rethink our approach to developing environmental science applications. Current approaches based on resource constrained, tightly controlled processing resources accessible to only a select few gives way to unconstrained, open processing solutions accessible to a broader community of science application researchers, developers and end-users.